	4	
u	-	١.

Potash alum is a chemical compound.

			1		
Choose the answer from the	box.		7		
Complete the sentence.					
The colour of the precipitate f	[:] ormed is	š		_·	(1
blue brown	g	reen	white		
Choose the answer from the	box.				
Complete the sentence.					
Sodium hydroxide solution is precipitate forms.	added to	a solution o	of potash alu	m until a	
Sodium hydroxide solution is	used to t	est for some	e metal ions.		
Using litmus paper					(2
Paper chromatography		3 9			
Measuring boiling point of so	olution	3			
Flame test					
Flame emission spectroscop	vy				
Tick (✓) two boxes.					
Which two methods can be u in potash alum solution?	sed to id	entify the pr	esence of po	tassium ions	
NAME 1 4 41 1 1					

Sulfate ions can be identified using dilute hydrochloric acid

red litmus paper silver nitrate solution

	and	(1
(d)	A solution of potash alum has a concentration of 258 g/dm ³	(-
,	Calculate the mass of potash alum needed to make 800 cm³ of a solution of potash alum with a concentration of 258 g/dm³	
	Give your answer to 3 significant figures.	
		-
		-
		-
	Mass (3 significant figures) =	g
	(Total 8	(4) marks
	(Total 8	
•—-	question is about displacement reactions.	
•—-		
This	question is about displacement reactions. The displacement reaction between aluminium and iron oxide has a high	
This	question is about displacement reactions. The displacement reaction between aluminium and iron oxide has a high activation energy.	marks
This	question is about displacement reactions. The displacement reaction between aluminium and iron oxide has a high activation energy.	
This	question is about displacement reactions. The displacement reaction between aluminium and iron oxide has a high activation energy. What is meant by 'activation energy'?	marks
This	question is about displacement reactions. The displacement reaction between aluminium and iron oxide has a high activation energy. What is meant by 'activation energy'? A mixture contains 1.00 kg of aluminium and 3.00 kg of iron oxide.	marks
(a)	question is about displacement reactions. The displacement reaction between aluminium and iron oxide has a high activation energy. What is meant by 'activation energy'? A mixture contains 1.00 kg of aluminium and 3.00 kg of iron oxide. The equation for the reaction is:	marks

lag	nesium displaces zinc from zinc sulfate solution.	
;)	Complete the ionic equation for the reaction.	
	You should include state symbols.	
	Mg(s) + Zn²+(aq) → +	
d)	Explain why the reaction between magnesium atoms and zinc ions is both oxidation and reduction.	

Q3.

This question is about the halogens.

Table 1 shows the melting points and boiling points of some halogens.

Table 1

Element	Melting point in °C	Boiling point in °C
Fluorine	-220	–188

Chlorine	-101	–35
Bromine	-7	59

(a) What is the state of bromine at 0 $^{\circ}$ C and at 100 $^{\circ}$ C?

Tick (✓) one box.

State at 0 °C	State at 100 °C	
Gas	Gas	
Gas	Liquid	
Liquid	Gas	
Liquid	Liquid	
Solid	Gas	
		01 9
Solid kplain the trend in l	Liquid	gens shown in Table 1 .
		gens shown in Table 1 .
		gens shown in Table 1 .
		gens shown in Table 1 .
		gens shown in Table 1 .

	reacts with each of the halogens in their gaseous form. diagram below shows the apparatus used.
	Iron
Hal	logen gas in Excess halogen gas out Heat Glass tube
d)	Give one reason why this experiment should be done in a fume cupboard
∋)	Explain why the reactivity of the halogens decreases going down the group.
))	
∌)	
)	
∌)	

(f) A teacher investigated the reaction of iron with chlorine using the apparatus in the above diagram.

The word equation for the reaction is:

iron + chlorine → iron chloride

The teacher weighed:

- the glass tube
- the glass tube and iron before the reaction
- the glass tube and iron chloride after the reaction.

Table 2 shows the teacher's results.

Table 2

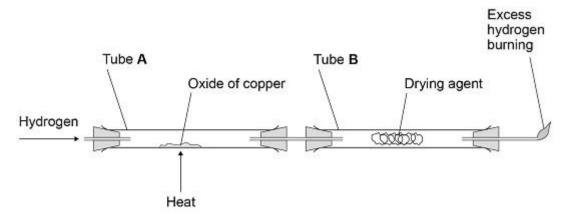
(6)

(Total 16 marks)

	Mass in g
Glass tube	51.56
Glass tube and iron	56.04
Glass tube and iron chloride	64.56

Calculate the simplest whole number ratio of:

moles of iron atoms : moles of chlorine atoms						
lanced equation	on for the reac	tion.				
nasses (<i>A</i> _r):	CI = 35.5	Fe = 56				
ms : moles of o	chlorine atoms	i =	:			
eaction						
	nasses (A _r):	nasses (A _r): CI = 35.5 ms : moles of chlorine atoms	ms: moles of chlorine atoms =			

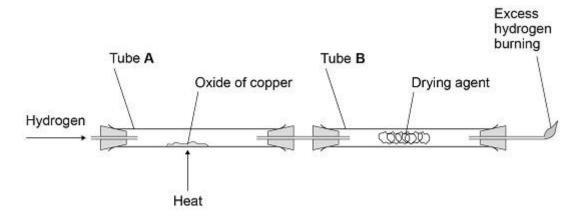

Q4.

Copper forms two oxides, Cu₂O and CuO

A teacher investigated an oxide of copper.

The following figure shows the apparatus.

(2)



This is the method used.

- 1. Weigh empty tube A.
- 2. Add some of the oxide of copper to tube A.
- 3. Weigh tube A and the oxide of copper.
- 4. Weigh tube **B** and drying agent.
- 5. Pass hydrogen through the apparatus and light the flame at the end.
- 6. Heat tube A for 2 minutes.
- 7. Reweigh tube **A** and contents.
- 8. Repeat steps 5 to 7 until the mass no longer changes.
- 9. Reweigh tube **B** and contents.
- 10. Repeat steps 1 to 9 with different masses of the oxide of copper.

Explain why tl	he excess hydrogen must be burned off.	

The figure above is repeated here.

The table below shows the teacher's results.

	Mass in g
Tube A empty	105.72
Tube A and oxide of copper before heating	115.47
Tube A and contents after 2 minutes	114.62
Tube A and contents after 4 minutes	114.38
Tube A and contents after 6 minutes	114.38
Tube B and contents at start	120.93
Tube B and contents at end	123.38

When an oxide of copper is heated in a stream of hydrogen, the word equation for the reaction is:

copper oxide + hydrogen → copper + water

(c)	Determine the mass of copper and the mass of water produced in this
	experiment.

Use the table.

Mass of copper = _____ g

Mass of water = _____ g

(2)

(d) The teacher repeated the experiment with a different sample of the oxide of copper.

0.72 g of water.	e of copper	produced 2.	54 g of copper and
Two possible equations for the	reaction are	э:	
Equation 1: $Cu_2O + H_2 \rightarrow 2 Cu$	1 + H ₂ O		
Equation 2: CuO + $H_2 \rightarrow Cu$ +	H ₂ O		
Determine which is the correct experiment.	equation fo	r the reaction	in the teacher's
Relative atomic masses (A _r):	H = 1	O = 16	Cu = 63.5

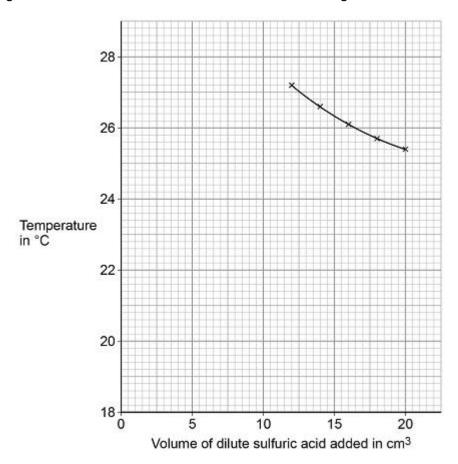
(3)

(Total 8 marks)

Q5.

A student investigated the temperature change in the reaction between dilute sulfuric acid and potassium hydroxide solution.

This is the method used.


- 1. Measure 25.0 cm³ potassium hydroxide solution into a polystyrene cup.
- 2. Record the temperature of the solution.
- 3. Add 2.0 cm³ dilute sulfuric acid.
- 4. Stir the solution.
- 5. Record the temperature of the solution.
- 6. Repeat steps 3 to 5 until a total of 20.0 cm³ dilute sulfuric acid has been added.

(2)

The following table shows some of the student's results.

Volume of dilute sulfuric acid added in cm ³	Temperature in °C
0.0	18.9
2.0	21.7
4.0	23.6
6.0	25.0
8.0	26.1
10.0	27.1

The figure below shows some of the data from the investigation.

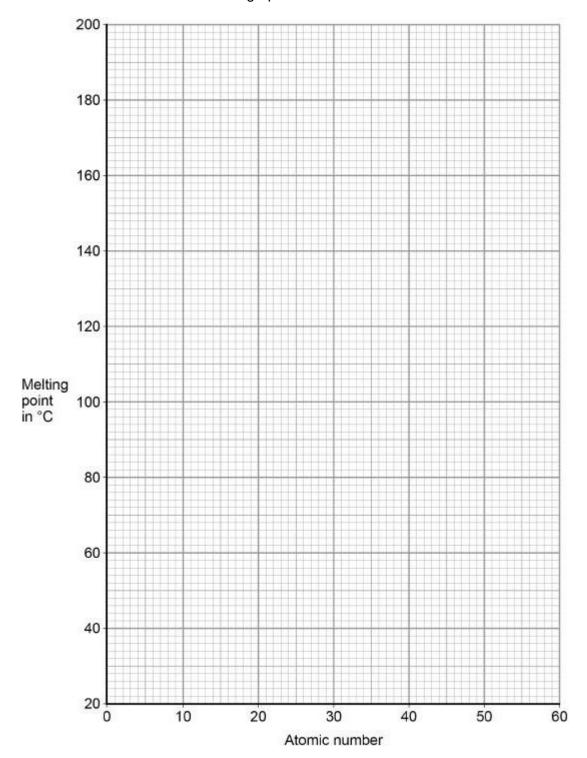
(b) Complete the figure:

- plot the data from the table
- draw a line of best fit through these points

,	extend the lines of best fit until they cross.
	nine the volume of dilute sulfuric acid needed to react completely 5.0 cm ³ of the potassium hydroxide solution.
Use th	e figure above.
Volum	e of dilute sulfuric acid to react completely = cm³
Detern	nine the overall temperature change when the reaction is complete.
Use th	e figure above.
	Overall temperature change =°
The st	udent repeated the investigation.
	udent used solutions that had different concentrations from the first gation.
	udent found that 15.5 cm³ of 0.500 mol/dm³ dilute sulfuric acid etely reacted with 25.0 cm³ of potassium hydroxide solution.
The ed	quation for the reaction is:
	$2 \hspace{0.1cm} KOH + H_2 SO_4 \to K_2 SO_4 + 2 \hspace{0.1cm} H_2 O$
Calcul and in	ate the concentration of the potassium hydroxide solution in mol/dm g/dm^3
Relativ	ve atomic masses (A_r) : H = 1 $O = 16$ K = 39

	Concentration in mol/dm³ =	mol/dm³
	Concentration in g/dm³ =	g/dm ³
		(Total 14 ma
This	question is about elements in Group 1.	
	acher burns sodium in oxygen.	
(a)	Complete the word equation for the reaction.	
	sodium + oxygen →	
(b)	What is the name of this type of reaction?	
	Tick one box.	
	Decomposition	
	Electrolysis	
	Oxidation	
	Precipitation	
(c)	The teacher dissolves the product of the reaction in water a universal indicator.	nd adds
	The universal indicator turns purple.	
	What is the pH value of the solution?	
	Tick one box.	

Give the name	of the substa	ance.		
II alkalis conta	ain the same	ion.		
Vhat is the for	mula of this i	on?		
Tick one box.				
H+				
Na+				
OH-				
O ²⁻				
		oncentration of ² there be in 250	40 g/dm³ cm³ of the solution?	
		Mass	=	
he melting po	ints of the ele	ements in Group	1 show a trend.	
The table belo		atomic numbers	and melting points of t	:he


3

181

Lithium

Sodium	11	98
Potassium	19	63
Rubidium	37	x
Caesium	55	29

Plot the data from the table on the graph below.

							(2)
	(h)	Predict the r	melting point, X ,	of rubidium, at	omic number 37		
		Use the gra	ph above.				
				Melting point	=	o	С
						(Total 10	(1) marks)
						·	
Q7		nium is a trans	sition metal				
				n dioxide in a tv	vo-stage industri	al nrocess	
	mai	Stage 1		$2 \operatorname{Cl}_2 \to \operatorname{TiCl}_4 +$	-	ar process.	
		Stage 2		→ Ti + 4 NaCl	200		
	(2)	_	e hazard associ		.1		
	(a)	Suggest o n	e nazaru assuci	ated with Stage	; I.		
							_
							(1)
	(b)	Water must	be kept away fro	om the reaction	in Stage 2 .		
			ason why it wou	ıld be hazardou	s if water came i	nto contact wit	th
		sodium.					
							_
							- (1)
	(c)			Stage 2 is carr	ied out in an atm	osphere of	
		argon and n	not in air.				
							_
							_
							_
							_ (2)
	(d)	Titanium chl	loride is a liquid	at room temper	ature.		()
			•	·	chloride to be a	liquid at room	
		temperature		•			
							_

omplete the half equation for the oxidation reaction. Na →+ Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.	
odium atoms are oxidised to sodium ions in this reaction. I'hy is this an oxidation reaction? I'hy is this an oxidation reaction?	
why is this an oxidation reaction? complete the half equation for the oxidation reaction. Na →+ Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.	sodium displaces titanium from titanium chloride.
omplete the half equation for the oxidation reaction. Na →+ Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.	m atoms are oxidised to sodium ions in this reaction.
omplete the half equation for the oxidation reaction. Na →+ Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.	s this an oxidation reaction?
Na \longrightarrow + Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.	
Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.	elete the half equation for the oxidation reaction.
	Na →+
ne equation for the reaction is:	ge 2, 40 kg of titanium chloride was added to 20 kg of sodium.
and a decomposition and a common section	quation for the reaction is:
TiCl ₄ + 4 Na → Ti + 4 NaCl	TiCl ₄ + 4 Na → Ti + 4 NaCl
elative atomic masses (A _r): Na = 23 CI = 35.5 Ti = 48	ve atomic masses (A_r): Na = 23 CI = 35.5 Ti = 48
xplain why titanium chloride is the limiting reactant.	in why titanium chloride is the limiting reactant.
ou must show your working.	nust show your working.

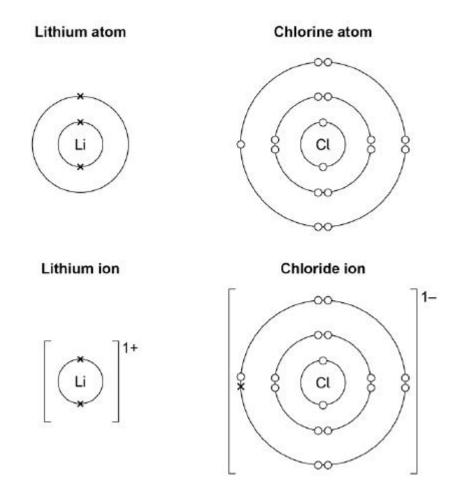
(h)	For a Stage 2 reaction the percentage yield was 92.3%
	The theoretical maximum mass of titanium produced in this batch was 13.5 kg.
	Calculate the actual mass of titanium produced.
	Mass of titanium = kg
	(Total 15 ma
•	
8. This	question is about methanol.
(a)	Methanol is broken down in the body during digestion.
	What type of substance acts as a catalyst in this process?
	Tick one box.
	Amino acid
	Enzyme
	Ester
	Nucleotide
In in	dustry, methanol is produced by reacting carbon monoxide with hydrogen.
The	equation for the reaction is:
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$
(b)	How many moles of carbon monoxide react completely with 4.0×10^3 moles of hydrogen?
	Tick one box.

	1.0 × 10 ³ moles	
	2.0 x 10 ³ moles	
	4.0 x 10 ³ moles	
	8.0 x 10 ³ moles	
	The reaction is car 100 atmospheres.	rried out at a temperature of 250 °C and a pressure of
-	The forward react	ion is exothermic.
2	Explain what happ 250°C is used.	pens to the yield of methanol if a temperature higher than
-		
-		
-		
_		
ŀ	A pressure of 100	atmospheres is used instead of atmospheric pressure.
-		re gives a greater yield of methanol and an increased
ľ		
	Explain why.	

alyst is used in the reaction to produce methanol from carbon monoxide ydrogen.
Explain how a catalyst increases the rate of a reaction.
Suggest why a catalyst is used in this industrial process.
Do not give answers in terms of increasing the rate of reaction.
Suggest the effect of using the catalyst on the equilibrium yield of methanol.

Q9.

This question is about metal compounds.


(a) Lithium reacts with chlorine to produce lithium chloride.

When lithium atoms and chlorine atoms react to produce lithium chloride, lithium ions and chloride ions are formed.

The diagram shows the electronic structures of the atoms and ions.

The symbols ${\bf o}$ and ${\bf x}$ are used to represent electrons.

(4)

Describe what happens when a lithium atom reacts with a chlorine atom.

Answer in terms of electrons.

Zinc sulfate can be made by two methods.

The equations for the two methods are:

Method 1: $ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$

	+ $H_2SO_4 \rightarrow ZnSO_4 + H_2O + CO_2$	
Calculate the pe	ercentage atom economy for making zinc sulfate in Meth	od
Use the equation	n:	
percentage aton	m economy =	
	relative formula mass of ZnSO ₄	
relative formula	mass of ZnO + relative formula mass of H ₂ SO ₄ ×100	
Give your answe	er to 3 significant figures.	
Relative formula	a masses (M_r): ZnO = 81 H ₂ SO ₄ = 98 ZnSO ₄ = 161	
		_
	Dercentage stem economy	
	Percentage atom economy =	_ %
than Method 2 .	a higher percentage atom economy for making zinc sulf	
than Method 2 . Give a reason w	a higher percentage atom economy for making zinc sulf	
than Method 2 . Give a reason we economy.	a higher percentage atom economy for making zinc sulf	
than Method 2 . Give a reason we economy. A student uses	a higher percentage atom economy for making zinc sultable why it is important to use a reaction with a high atom	
than Method 2 . Give a reason we economy. A student uses the student us	a higher percentage atom economy for making zinc sulfactory why it is important to use a reaction with a high atom	

(Total 10 marks)

\frown	4	Λ	
u	•	U.	

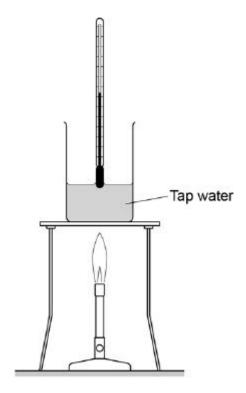
A scientist produces zinc iodide (ZnI₂).

This is the method used.

- 1. Weigh 0.500 g of iodine.
- 2. Dissolve the iodine in ethanol.
- 3. Add an excess of zinc.
- 4. Stir the mixture until there is no further change.
- 5. Filter off the excess zinc.
- 6. Evaporate off the ethanol.
- (a) Ethanol is flammable.

	Suggest how the scientist could carry out Step 6 safely.
۱	buggest new the scientist could early out otep o salety.
	Explain why the scientist adds excess zinc rather than excess iodine.
_	
-	
_	
-	

The equation for the reaction is:


$$Zn \ + \ I_2 \ \longrightarrow \ ZnI_2$$

Relative atomic masses (M_r): Zn = 65 I = 127

	Minimum mass of zinc =
diff	erent scientist makes zinc iodide by the same method.
e s	scientist obtains 12.5 g of zinc iodide.
e į	percentage yield in this reaction is 92.0%.
)	What is the maximum theoretical mass of zinc iodide produced in this reaction?
	Maximum theoretical mass =
)	Suggest one reason why the percentage yield in this reaction is not 100%
	The scientist makes a solution of zinc iodide with a concentration of 0.100 mol / $\mathrm{dm^3}$
	Calculate the mass of zinc iodide (ZnI_2) required to make 250 cm 3 of this solution.
	Relative atomic masses (A_r): $Zn = 65$ $I = 127$

	Mass =
	(Total 14
1.	able water is water that is safe to drink.
	water can be changed into potable water by desalination.
(a)	Name the substance removed from seawater by desalination.
(b)	Decalination requires large amounts of energy
(b)	Desalination requires large amounts of energy. Desalination is only used when there is no other source of potable water.
	Give one reason why.
Wat	er from lakes and rivers can be treated to make it potable.
(c)	The first stage is to filter the water from lakes and rivers.
	Why is the water filtered?
(d)	Chlorine gas is then added to the filtered water.
	Why is chlorine gas used to treat water?
<i>(</i>)	Describes a test for ablasia.
(e)	Describe a test for chlorine gas.
	Give the result of the test if chlorine is present.
	Test

	Result			
	_			(2)
Som	ne students investiga	ted different water	samples.	
The	table shows some o	f their results.		
	Water	рН	Mass of dissolved solid in g / dm ³	
	Tap water	6.5	0.5	
	Seawater	8.1	35.0	
	Pure water			
(f) (g)			e expected results for pure	(2)
	5 g			40
(h)			hether substances are pure students used to find the	

Q12.

A student investigated the reactions of copper carbonate and copper oxide with dilute hydrochloric acid.

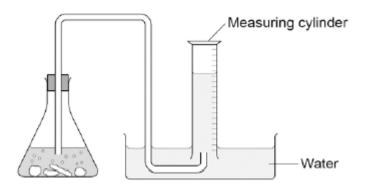
In both reactions one of the products is copper chloride.

)	Describe how a sample of copper chloride crystals could be made from copper carbonate and dilute hydrochloric acid.

	anted to make 11.0 g of copper chloride.
	n for the reaction is:
The equation	
	$CuCO_3 + 2HCI \rightarrow CuCl_2 + H_2O + CO_2$
Relativ 63.5	/e atomic masses, A _r : H = 1; C = 12; O = 16; Cl = 35.5; Cu =
	e mass of copper carbonate the student should react with chloric acid to make 11.0 g of copper chloride.
	Mass of copper carbonate =
The percenta	age yield of copper chloride was 79.1 %.
0-11 (4	e mass of copper chloride the student actually produced.
Calculate the	
Calculate the	Actual mass of copper chloride produced =
	Actual mass of copper chloride produced =e
	equations for the two reactions:
Look at the e	equations for the two reactions: $CuCO_3(s) + 2HCl(aq) \rightarrow CuCl_2(aq) + H_2O(l) + CO_2(g)$
Look at the e Reaction 1 Reaction 2	equations for the two reactions: $CuCO_3(s) + 2HCl(aq) \rightarrow CuCl_2(aq) + H_2O(l) + CO_2(g)$

Percentage atom economy =	%
The atom economy for Reaction 1 is 68.45	
Compare the atom economies of the two r chloride.	eactions for making copper
Give a reason for the difference.	

Q13.


Sodium carbonate reacts with dilute hydrochloric acid:

$$Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$$

A student investigated the volume of carbon dioxide produced when different masses of sodium carbonate were reacted with dilute hydrochloric acid.

This is the method used.

- 1. Place a known mass of sodium carbonate in a conical flask.
- 2. Measure 10 cm³ of dilute hydrochloric acid using a measuring cylinder.
- 3. Pour the acid into the conical flask.
- 4. Place a bung in the flask and collect the gas until the reaction is complete.
- (a) The student set up the apparatus as shown in the figure below.

Identify the error in the way the student set up the apparatus.

escribe what would happen if the student used the apparatus shown.	
	_
	_
	_
	_

(b) The student corrected the error.

The student's results are shown in the table below.

Mass of sodium carbonate in g	Volume of carbon dioxide gas in cm³
0.07	16.0
0.12	27.5
0.23	52.0
0.29	12.5
0.34	77.0
0.54	95.0
0.59	95.0
0.65	95.0

The result for 0.29 g	g of sodium carb	onate is anomaious
-----------------------	------------------	--------------------

Suggest what may have happened to cause this anomalous result.	uit.

What further work could the student do to be more of minimum mass of sodium carbonate needed to prodict dioxide?	
The carbon dioxide was collected at room temperat The volume of one mole of any gas at room tempera	
24.0 dm³.	
How many moles of carbon dioxide is 95.0 cm ³ ? Give your answer in three significant figures.	
	mo
Suggest one improvement that could be made to the would give more accurate results.	
would give more accurate results.	
would give more accurate results.	
would give more accurate results.	
would give more accurate results.	
	e apparatus used that

xplain why the second student was correct.			
	· · · · · · · · · · · · · · · · · · ·		(2)
		(Total 11	